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SUMMARY

In this work we extend our edge-based stabilized finite element incompressible flow solver to turbulence
modeling with the residual-based variational multiscale (RB-VMS) method. Using the advective-form
of the convection term of the Navier–Stokes equations, RB-VMS is implemented as a straightforward
extension of standard stabilized methods with a modified advective velocity. This requires minimum
modification of the existing highly optimized code. Two test cases were solved to assess accuracy and
performance of the present implementation. First, the laminar incompressible flow past a circular cylinder
at Re=100 and second, the fully turbulent incompressible flow in a lid-driven cubic cavity at Re=12000.
Comparisons were made with standard stabilized finite element formulations, highly resolved numerical
simulations and experimental data. Results have shown that the present implementation is able to achieve
reasonable accuracy without performance degradation in different flow regimes. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow of incompressible fluids is often in turbulent state. The incompressible Navier–Stokes equa-
tions represent the mathematical model for both laminar and turbulent flow states. Solving for all
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2 E. F. LINS ET AL.

the length and temporal scales present in turbulent flows, a process known as direct numerical
simulation (DNS), is still a challenge, particularly at high Reynolds numbers. A viable alterna-
tive is large eddy simulation (LES), where only the large flow structures are solved, while the
effects of smaller structures on the large ones are modeled [1]. The variational multiscale method
(VMS) [2, 3] provides a theoretical framework for general multiscale problems in computational
mechanics by separating the scales of interest in a predetermined number of groups (usually two,
coarse and fine scales). Inspired by traditional LES, VMS was initially applied to turbulent flows by
generating eddy viscosities (static and dynamic) associated only with the fine scales. This approach
has been applied successfully to a number of problems, with several discretization methods. Please
see Hughes et al. [4], Calo [5] and Gravemeier [6] for detailed reviews.

VMS is also closely linked to stabilized methods, particularly for solving the incompressible
Navier–Stokes equations [4]. Stabilization is needed to prevent spurious oscillations in convection-
dominated flows when under-resolved meshes are employed. It is also needed to prevent undesired
pressure oscillations when equal-order interpolations for velocity and pressure are used. In turbulent
flow, small-scales physics become crucial and the beneficial effects of stabilization may be used
to generate numerically eddy viscosities needed in LES [7–10]. Practical examples of such an
approach, in fluid–structure interaction, dispersion of radionuclides in nuclear power plants and
density currents may be found in [11–13]. In these, different numerical implementations are present
(space–time, semi-discrete, fully coupled, segregated) and additional computational devices, such
as mesh adaptation or discontinuity-capturing is often employed. For the orthogonal subgrid
scale stabilized finite element method, Guasch and Codina [14] proved that the contribution to
the energy balance equations of the stabilized terms is proportional to the physical dissipation
rate. Nevertheless, according to Bazilevs et al. [15], traditional eddy viscosities are inefficient in
representing fine-scales dissipation mechanisms and introduce inconsistencies.

As a remedy, the residual-based variational multiscale (RB-VMS) is emerging as a new concept
in LES. It was introduced in Calo [5], who studied bypass transition on a zero-pressure gradient
flat plate. Calo has also shown an implementation of RB-VMS on a second-order finite volume
code and described how to derive a weak formulation that yields an equivalent discrete equation
system. Gravemeier et al. [16] studied turbulent flows in a channel at Re=180 with an RB-
VMS finite element method showing the importance of higher-order polynomial approximations.
Bazilevs et al. [15] presented an LES-type VMS theory of turbulence and tested it on forced
homogeneous turbulence, isotropic turbulence and turbulent homogeneous channel flows, stressing
the superior quality of NURBS elements with respect to classical finite elements. Akkerman et al.
[17] examined the role of continuity in computation of turbulent flows with RB-VMS applied to
the advective-form of the governing equations.

Edge-based data structures have been introduced in the finite element context to speed up
explicit compressible flow simulations [18]. More recently edge-based implementations have been
introduced for several other problems. Ribeiro et al. [19] presented an edge-based implementation
for stabilized semi-discrete and space–time finite element formulations for shallow water equations,
Catabriga and Coutinho [20] for the implicit Streamline-Upwind Petrov–Galerkin (SUPG) solution
of the Euler equations, Soto et al. [21] for incompressible flow problems with fractional step
methods, Kraft et al. [22] for a segregated symmetric stabilized solution of incompressible flow
with heat transfer. Parallel simulations of viscoplastic, free-surface flows and density currents
employing stabilized edge-based formulations may be found in [13, 23, 24]. Ribeiro and Coutinho
[25] show that for unstructured grids composed by tetrahedra, edge-based data structures decrease
the number of floating point operations and indirect addressing in matrix–vector products needed
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in Krylov space solvers and diminish the storage area to hold Jacobians compared with element
and pointwise data structures, particularly for problems involving many degrees of freedom. The
construction of edge operations is completely algebraic [13, 20, 22–25], based on the concept of
disassembling element operators, regardless of the particular underlying finite element formulation.

In this work, we extend our edge-based stabilized finite element incompressible flow solver to
turbulence with RB-VMS. The main characteristics of our basic solver are: SUPG [26], pressure-
stabilizing/Petrov–Galerkin (PSPG) and least-squares incompressibility constraint (LSIC) stabi-
lized finite element formulation, [27, 28]; implicit time marching scheme with adaptive time
stepping control; advanced inexact Newton solvers; edge-based data structures to save memory
and improve performance; support to message passing and shared memory parallel program-
ming models; LES by Smagorinsky’s model and volume-of-fluid (VOF) extensions to track the
evolving free surfaces [23]. In the following section we derive the RB-VMS formulation, and in
the sequence we show how to incorporate it, using the advective-form of the convection term of the
Navier–Stokes equations [17], as a straightforward extension of standard stabilized methods with a
modified advective velocity. This requires minimum modification of the existing highly optimized
code. Two test cases were solved in Section 4, a laminar and a turbulent problem. We solved the
incompressible flow past a circular cylinder at Re=100 and compared RB-VMS with standard
stabilized formulations. We have shown that RB-VMS presented similar accuracy and performance
as SUPG/PSPG/LSIC in this laminar test case. Then, we compare our results in the lid-driven
cubic cavity at Re=12000 problem, where recent LES, DNS and experimental results are available
[29]. We noted that the present implementation was able to capture most of the relevant turbulent
flow features with reasonable accuracy when compared with highly resolved numerical simulations
and experimental data. The paper ends with a summary of our main conclusions.

2. THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS AND MULTISCALE
TURBULENCE MODELING

Unlike many other multi-scale phenomena, turbulence is believed to be accurately described by
using one unique equation through all present scales. Indeed, geometrical patterns with the shape
of eddies are replicated in different spatial scales and the incompressible Navier–Stokes equations
are often adopted for modeling turbulent flows.

The Navier–Stokes equations lead to the following nonlinear mathematical problem to be solved:
Let �⊂R3 be an open bounded region, where flow occurs, with a piecewise regular boundary
�. Find the pressure p (divided by the constant density) and the velocity u fields satisfying the
following equations along the time interval [0, t f ]:

�u
�t

+u·∇u−∇ ·r= f on �×[0, t f ] (1)

∇ ·u=0 on �×[0, t f ] (2)

with f the body force vector per unity density and r the stress tensor given as

r(p,u)=−pI+T (3)

where I is the identity tensor and T is the deviatoric stress tensor,

T=2�e(u) (4)
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In Equation (4) � is the kinematic viscosity and e(u) is the strain rate tensor defined as

e(u)= 1
2 (∇u+(∇u)T) (5)

Essential and natural boundary conditions for Equation (1) are u=g on �g and n·r=h on �h ,
where �g and �h are complementary subsets of the domain boundary �. Functions g and h are
given and n is the unit outward normal vector of �. A divergence-free velocity field u0 is the initial
condition. Moreover, for many applications, we are interested in the domains and boundaries that
change along time and are not completely known in advance. Typically, we are referring to free
surfaces flows, in which a part of the boundary should be tracked along the flow [13, 23].

The above mathematical problem, represented by the balance of momentum, continuity equation,
initial and boundary conditions, is recast into a weak formulation described by: Find the pair
(u, p)∈V ∗ =V ×P,∀(w,q)∈W ∗ =W ×Q, such that:(

�u
�t

,w
)

�
+(u·∇u,w)�+(r(p,u),e(w))�+(∇ ·u,q)� =(f,w)�+(h,w)�h (6)

where (., .)� =∫�(·, ·)d� is the standard scalar product in L2(�), the space of functions that are
square integrable, and the trial spaces are defined as

V ={u(., t)|u(., t)∈H1(�)3;u=g on �g} (7)

P=
{
p(., t)|p(., t)∈L2(�);

∫
�
pd�=0

}
(8)

with W ∗ being the corresponding weight space.
At this point, it is worth mentioning that the above weak formulation provides the basis for a

Galerkin finite element approximation, which can present an unstable behavior. Spurious oscilla-
tions in the Galerkin formulation can appear due to incompatible spaces (continuous or discrete)
and/or dominant advection. Both drawbacks can be handled by the use of stabilization [26–28], in
which residual terms weighted by tuned parameters are appended to the above weak formulation.
In the following, VMS is introduced in order to develop formulations that, at the same time, handle
possible instabilities and provide a convenient theoretical framework for incorporating turbulence
modeling in the LES sense.

Lately, VMS has been recognized as a new paradigm for building stabilized finite element
formulations, in which extra stability stems from encoding the dynamics of the fine scales [15, 17].
In that sense, the first step consists of the multiscale decomposition of the original fields,

u=uh+u′ (9)

p= ph+ p′ (10)

where (uh, ph) and (u′, p′) stand for the coarse and fine scale components of the solution, respec-
tively. Indeed, what one has in mind is an a priori decomposition of V ∗ into a direct sum of spaces,
that is, V h⊕V ′. The coarse scale is directly associated with a finite element approximation of the
problem to be performed over the partition of the domain into non-overlapping elements �e with
characteristic length h.

It is important to mention that different formulations departing from the above ab initio decom-
position, based on finite element approximations or not, have been introduced recently [4, 6]. They
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mainly differ in the way the fine-scale solution u′ is addressed and how it is approximated. Here,
we reproduce the main steps toward the formulation proposed in [15, 17]. This formulation can be
understood as a new LES modeling paradigm not relying on spatial filters or eddy viscosities as
they can pose severe theoretical restrictions related to the commutation between spatial and time
derivatives or when complex domains are to be considered.

The decompositions (9) and (10) are plugged into Equation (6) and the linearity on the second
slot is explored such that the following equations are obtained:(

�(uh+u′)
�t

,wh
)

�
+((uh+u′) ·∇(uh+u′),wh)�+(r(ph+ p′,uh+u′),e(wh))�

+(∇ ·(uh+u′),qh)� =(f,wh)�+(h,wh)�h ∀(wh,qh)∈Wh×Ph (11)(
�(uh+u′)

�t
,w′

)
�

+((uh+u′) ·∇(uh+u′),w′)�+(r(ph+ p′,uh+u′),e(w′))�

+(∇ ·(uh+u′),q ′)� =(f,w′)�+(h,w′)�h ∀(w′,q ′)∈W ′×P ′ (12)

Rearranging the terms in Equation (12) and applying integration by parts, the equation corre-
sponding to the fine scales is now cast as

(Lu(u′, p′),w′)�e =(rM(uh, ph),w′)�e ∀w′ ∈V ′(�e) (13)

where Lu is a compact notation for the advective–diffusive operator having as advective velocity
u=uh+u′ and rM is the residual associated with the momentum equation. Note also that q ′ has
been made zero.

Equation (13) might be interpreted as the one governing the response of the fine scales driven by
the residual of the coarse-scale equation, rM. The development of this equation has assumed that:

(i) The velocity fine-scales component vanishes on the element boundaries, which implies that
terms involving integrals over inter-element interfaces are also zero. This introduces an
approximation for u′ inspired on the so-called bubble functions.

(ii) The time dependence of u′ is not considered, leading to a quasi-static modeling of the fine
scales. The effects of taking into account the time dependence of u′ are investigated in [30].

Despite the above simplifying hypotheses, u′ is defined in an infinite-dimensional space and here
it will not be solved but approximated through an algebraic model. Before introducing this model,
it is important to note that V ′(�e) is a subspace, thus Equation (13) can be manipulated such
that we obtain a nonlinear partial differential equation to hold at each point in the interior of an
element. This is crucial for the computational formulation to be presented later. The following
algebraic model is introduced without deeper comments on its connection with Green’s operators
[2, 3, 15, 17], that is,

u′ =−�MrM (14)

where �M is a parameter to be set. Besides that, the model neglects the influence of p′ in u′
and then a heuristic scaling of the continuity equation motivates us to approximate the pressure
fine-scales component as

p′ =−�CrC (15)
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with rC representing the residual of the continuity equation and �C is also a parameter to be set
later. Now the relations (14) and (15) are substituted into Equation (13). Considering that only
linear elements are employed here, applying integration by parts to the viscous term related to
the velocity fine-scales component ends up on two vanishing terms. One, considering an integral
over the domain, vanishes as it involves the Laplacian of the weighting functions. The other,
encompassing the boundary, is disregarded as the meshes cover the border by element faces where
u′ =0. Thus, the resulting equation representing the finite element problem to be solved is given by

(
�uh

�t
,wh

)
�

+((uh−�MrM) ·∇uh,wh)�+(r(ph,uh),e(wh))�

+(∇ ·uh,qh)�+(�MrM,uh ·∇wh+∇qh)�+(�C∇ ·uh,∇ ·wh)�

−(�MrM,�MrM ·∇wh)� =(f,wh)�+(h,wh)�h (16)

The integral after the velocity divergence term, involving the momentum coarse-scale residual can
be interpreted as a stabilization term similar to the ones present in the SUPG/PSPG formulations
(for a recent review, see [28]). The integral involving the continuity coarse-scale residual is a
term similar to the LSIC stabilization, introduced in [27] and used to control oscillations at high
Reynolds numbers flows. This observation was first made in Calo [5]. The last integral has been
rearranged and if we add it to the stabilization integral we arrive at

(
�uh

�t
,wh

)
�

+((uh−�MrM) ·∇uh,wh)�+(r(ph,uh),e(wh))�+(∇ ·uh,qh)�

+(�MrM, (uh−�MrM) ·∇wh+∇qh)�+(�C∇ ·uh , ∇ ·wh)�

=(f,wh)�+(h,wh)�h (17)

A remarkable fact present in Equations (16) and (17) is the convective velocity given by u∗ =
uh+u′ =uh−�MrM. Substituting the relation for u∗ in Equation (17) we arrive at

(
�uh

�t
,wh

)
�

+(u∗ ·∇uh,wh)�+(r(ph,uh),e(wh))�+(∇ ·uh,qh)�

+(�MrM,u∗ ·∇wh+∇qh)�+(�C∇ ·uh,∇ ·wh)� =(f,wh)�+(h,wh)�h (18)

which comprises an important difference when compared with former applications of the VMS
approach to turbulence. Those formulations introduce a consistency error [5]. Moreover, the convec-
tive velocity encoded above is believed to better reproduce the physical mechanisms of eddies
generation. The similarity of Equation (18) to the one resulting from the SUPG/PSPG/LSIC
stabilized formulation is noteworthy. Certainly it can accommodate algorithms, data structures
and procedures used for solving the resulting nonlinear problems, which are successfully used
in stabilized methods and are addressed in the following section. Please note that this modified
velocity does not disrupt the method’s consistency.
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Here, the parameters �M and �C are computed simply by the standard expressions of stabilized
methods,

�M=
⎛
⎝ 4

�t2
+
(‖uh‖

h#

)2

+9

(
�

h2#

)2
⎞
⎠

−1/2

, �C= h#
3

‖uh‖ (19)

where h# is the element length computed as the cubic root of the element volume and �t is the time
step. The formulae in Equation (19) can be tracked back to the original ones of [15, 17] through a
linearization around homogenous stretched mappings relating reference and actual elements. Note,
however, that the definition above is only recommended for simple elements, as the case of the
linear tetrahedra used in the numerical experiments. For other elements, please use the general
definitions in [15, 17].

3. SOLUTION PROCEDURE

The RB-VMS formulation presented in this work was implemented in the EdgeCFD software
[13, 23], which is an incompressible flow solver able to treat free-surface flow problems by a VOF
approach and density-driven flow. The finite element method in EdgeCFD is the SUPG/PSPG
formulation plus LSIC stabilization for the incompressible Navier–Stokes equation and the SUPG
formulation with discontinuity-capturing for scalar transport. Turbulence in EdgeCFD has been
treated by a Smagorinsky model [23]. EdgeCFD is a parallel Fortran90 finite element code
consisting of an outer time integration loop of two staggered-coupled systems of equations. Most
of the computational cost comes from the u–p coupled solution of the incompressible flow equa-
tions, while the cheapest part is due to the transport equation. Time integration is a predictor-
multicorrector algorithm with adaptive time stepping by a proportional-integral-derivative controller
(further details available in [31]). Within the flow solution loop, the multi-correction steps corre-
spond to the inexact Newton method as described in [32]. In this method the tolerance of the linear
solver is adapted according to the evolution of the solution residua. EdgeCFD iterative driver is
the generalized minimal residual method (GMRES), since the equation systems stemming from
the incompressible flow and transport are non-symmetric. Furthermore, a nodal block-diagonal
and diagonal preconditioner are used respectively for flow and transport. Most of the computa-
tional effort spent in the solution phase is devoted to matrix–vector products. In order to compute
such operations more efficiently, we have used an edge-based data structure as detailed in [32].
According to Ribeiro and Coutinho [25], this data structure, when applied to problems as those
described in this work, is able to reduce the indirect memory access, the memory requirements to
hold the coefficients of the stiffness matrices while decreasing the number of floating point opera-
tions per second when compared with other traditional data structures such as element-by-element
of compressed sparse row. The computations are performed in parallel using a distributed memory
paradigm through the message passing interface library. The parallel partitions are generated by the
Metis library [33] while the information regarding the edges of the computational grid is obtained
from the EdgePack library as described in [34]. EdgePack also reorders nodes, edges and elements
to improve data locality, exploiting efficiently the memory hierarchy of current processors. Integrals
in EdgeCFD are computed using closed-form relations derived in volume coordinates or using a
one-point (centroid) integration rule. Thus, all coefficients in the element matrices and residua are
explicitly coded.
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Therefore, if we evaluate u∗ and the stabilization parameters �M and �C using values of the
previous multi-correction, in a linearization scheme similar to the iteration-update of Tezduyar and
Osawa [35] and Tezduyar [36], the RB-VMS implementation in EdgeCFD becomes straightforward.
Moreover, in doing this, the only code modification required is the evaluation of rM at the tetrahedra
integration points. This is indeed very simple for straight-sided linear tetrahedra, requiring a few
extra floating point operations and no additional memory but a few temporary variables.

4. NUMERICAL EXAMPLES

In order to assess the main characteristics of the formulation previously presented and test its
feasibility in the context of high-performance computing, two examples are analyzed. They were
chosen to cover different flow regimes, from laminar to turbulence, and to deal with engineering
applications as well.

Please note that the RB-VMS computations shown in the following qualify this formulation as
an important tool to be used within the realm of simulation of real flows. That is especially due
to the fact that it does not require any LES-type modeling and, thus, can be applied to any region
of the domain, regardless of the flow regime.

All computations were carried out in an SGI Altix 450 with 32 cores Intel Itanium2 processors,
with 1.6MHz/6MB L2 and 2GB of memory per processor.

4.1. Vortex shedding around a circular cylinder at Re=100

The classical problem of vortex shedding around a circular cylinder at the Reynolds number
Re=100 is considered as an example of the ability of the present formulation to solve laminar
incompressible flow problems. The computational domain follows the dimensions described in
[32] and the mesh is formed by 446 662 linear tetrahedra, 1 010 367 edges and 81 991 nodes. The
Reynolds number is based on the diameter of the cylinder, free-stream velocity and viscosity of
the fluid. The boundary conditions are set as follows: no-slip condition at cylinder surface, u=1
at domain inlet, zero-normal velocity and zero-shear stress at the lateral boundaries, traction-free
conditions at the outflow boundary. Kalro and Tezduyar [37] noted that instabilities associated with
three-dimensional effects occur in the vicinity of Re=190. Figure 1 shows the cylinder surface
mesh (a) and a vorticity snapshot (b), where well-defined von Karman vortex streets can be seen.
These vortexes are almost uniform in the z-direction.

The simulation employed a fixed time step of 0.05 and 1000 time steps. The maximum inexact-
Newton tolerance was set to 0.1 and the nonlinear loops were stopped after the relative residual
or relative step increment decreased 3 orders of magnitude. The number of Krylov vectors for
the preconditioned GMRES solver is set to 45. We compare in Figure 2 drag and lift coeffi-
cients for the present RB-VMS formulation with those computed, respectively, by SUPG/PSPG
and SUPG/PSPG/LSIC. Note that the RB-VMS and the SUPG/PSPG/LSIC are in excellent
agreement.

Another global variable of interest is the Strouhal number, defined as

St= D

U0
� (20)
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Figure 1. Flow around a circular cylinder at Re=100: (a) mesh and (b) vorticity snapshot.

Figure 2. Drag and lift coefficients for the flow around a cylinder problem.

where D is the cylinder diameter, U0 is the inflow velocity and � is the vortex shedding frequency.
The Strouhal number computed values for different formulations are given in Table I, where we
also included a reference value computed numerically by Mittal [38] with a very fine mesh, with
933 180 nodes, around 10 times more than the present one. Mittal also used the SUPG/PSPG/LSIC
formulation, but with trilinear hexahedra.

We can see that a good agreement is obtained for the Strouhal number. Figure 3 shows a
qualitative comparison for velocity and pressure in two different time steps. In (a) we show the
solutions at an early time step and in (b) solutions are in the periodic regimen. More pronounced
differences can be seen for pressure at the early time step. The similarity between the RB-VMS
and SUPG/PSPG solutions at this instant is however noteworthy.
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10 E. F. LINS ET AL.

Table I. The Strouhal numbers for the circular cylinder.

FEM formulation Strouhal number

RB-VMS 0.1523
SUPG/PSPG 0.1560
SUPG/PSPG/LSIC 0.1527
Mittal [38] 0.1610

Figure 3. Velocity and pressure comparison for the circular cylinder problem: (a) velocity and pressure at
t=0.003s and (b) velocity and pressure at t=0.272 s.
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EDGE-BASED FINITE ELEMENT IMPLEMENTATION OF THE RB-VMS METHOD 11

Figure 4. Performance analysis of inexact Newton method for the flow around a cylinder problem:
(a) absolute residua; (b) relative residua; (c) relative solution increment; and (d) linear tolerance.

In Figure 4 we show a performance analysis of the inexact Newton method for RB-VMS,
SUPG/PSPG and SUPG/PSPG/LSIC solutions. It is presented for a sequence of 50 time steps
around t=625 s, where the flow is already periodic, the evolution of the absolute residual (a), the
relative residual (b), the solution increment (c) and the GMRES tolerance (d) for the inexact Newton
iterations in this interval. The horizontal axis represents the global nonlinear iteration counter.
We may note in Figure 4 that RB-VMS presents a performance equivalent to the SUPG/PSPG
and SUPG/PSPG/LSIC solutions. In all time intervals we have observed a similar pattern. In the
transition to the periodic regime, however, differences are more pronounced, with RB-VMS close
to the SUPG/PSPG/LSIC solution.

4.2. Lid-driven cavity flow at Re=12000

In the next test, the lid-driven cavity flow was solved for Re=12000. This is a classic benchmark
problem already addressed by a number of researchers (for a review of this problem, see [39]).
Despite the simplicity of its geometry and boundary conditions, complex flow patterns are generated
in this problem, especially at high Reynolds numbers. An SUPG/PSPG/LSIC computation, with
the Smagorinsky model implemented as described in [23], was also used for comparison purposes.
The Smagorinsky constant is fixed to be CS=0.1 and the length scale is taken as the cubic root
of the element volume.
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12 E. F. LINS ET AL.

Figure 5. (a) Geometry, mesh and boundary conditions for lid-driven cavity flow; (b) velocity profile in
the lid; (c) coarse; and (d) fine mesh at the cavity back wall.

The geometry and boundary conditions are shown in Figure 5(a). It consists of a cubical cavity
with length L . The axis origin is at the center of cavity. To avoid discontinuities in Dirichlet
boundary conditions, an approach similar to the one applied by Bouffanais et al. [29] is used to
set the velocity profile in the lid:

u=U0

(
1−

(
2x

L

)18
)2(

1−
(
2y

L

)18
)2

, v=0, w=0 (21)

where u,v and w are the flow velocities at directions x, y and z, respectively. U0 is the velocity in
direction x at the lid. This velocity profile is shown in Figure 5(b). No-slip boundary conditions
are set in all other walls. The Reynolds number is computed as Re= LU0/�.

Aiming at analyzing the role of refining the spatial grids, two different meshes were employed.
Both are regular at walls with respectively 64 and 128 element divisions at the edges, but distorted
to improve mesh quality inside the domain. Figures 5(c) and (d) show the element distribution at
the cavity back wall. The coarse mesh is formed by 643 070 linear tetrahedra elements, 117 196
nodes and 792 396 edges, while the fine mesh has 2 650 520 linear tetrahedra elements, 462 689
nodes and 3 159 654 edges.
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Figure 6. Velocity profiles in the mid-plane y/L=0 for different refining levels: (a) mean value of velocity
in the x-direction and (b) mean value of velocity in the z-direction.

Table II. Numerical errors computed in mid-plane y/L=0.

〈U 〉 in z/L 〈W 〉 in x/L

eRB-VMS-64 0.2520 eRB-VMS-64 0.4465
eRB-VMS-128 0.2435 eRB-VMS-128 0.2653

The simulations employed a fixed time step of 0.1 and 20 000 time steps (2000 time units). The
maximum inexact Newton tolerance was set to 0.1 and the nonlinear loops were stopped after the
relative residual or relative step increment decreased 3 orders of magnitude. We also limited to 7
the maximum number of inexact Newton iterations per time step. The number of Krylov vectors
for the preconditioned GMRES solver is set to 200. The mean velocity at the cavity is calculated
by time averaging each velocity component.

Although a detailed convergence analysis is not within the goals of this paper, the improvement
through refining the mesh can be directly assessed by observing Figure 6. The velocity profiles
in the mid-plane y/L=0 obtained with the RB-VMS formulation are compared with the DNS
solution of Bouffanais et al. [29]. The improvement achieved through mesh refinement can be
quantified by computing the error as the difference between the finite element results and some
reference. In the present case the DNS was chosen, given rise to an average measure

e=
(
1

N

N∑
1

(uFEM−uDNS)
2
)1/2

(22)

where N stands for the number of points. The obtained errors along different directions are
summarized in Table II, where e has been computed along the symmetry plane.

Figure 7 shows the velocity profile at the cavity symmetry plane (y/L=0). Results are compared
with the DNS and LES with a Dynamic Smagorinsky model solutions obtained by Bouffanais
et al. [29], which used a spectral element method and the experimental measurements from
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Figure 7. Velocity profiles in mid-plane y/L=0. Left side: mean value of velocity in the x-direction and
right side: mean value of velocity in the z-direction.

Figure 8. Contours of mean velocity in the cavity: (a) the x-component and (b) the z-component.
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Figure 9. Time history of lid-driven cavity total kinetic energy.

Prasad and Koseff [40]. In Figure 7 and in subsequent figures the SUPG/PSPG/LSIC solution with
the Smagorinsky model is identified simply as Smagorinsky. The improvement of the numerical
results when refined grids are adopted is worth noting. The velocity obtained with the finer mesh
gets closer to both the DNS and the experimental ones. Note though that an even finer mesh could
improve these results.

In Figure 8 the mean velocity contours in the cavity mid-plane are presented. As can be observed,
the main structures of flow (vortex position, velocity overall distribution) are present and the
velocity ranges compares fairly well with the results in Bouffanais et al. [29]. Figure 9 shows the
total kinetic energy temporal evolution given by

Ek(uh, t)= 1

2

∫
�
uh(t) ·uh(t)d� (23)

We may observe that the total energy for the solution computed with the SUPG/PSPG/LSIC
plus the Smagorinsky model is larger than using the RB-VMS formulation. This could be explained
by noting that as the Smagorinsky model introduces viscosity through all scales of the resolved
flow, a larger boundary layer around the lid tends to be formed, which ends up in more energy
being transmitted to the cavity flow. This fact was already noted by Gravemeier et al. [41]. As
long as the energy dissipation rate of this model is also elevated, high fluctuation of total energy
can be expected. The RB-VMS, on the other hand, introduces much less numerical viscosity, and
consequently the energy values and fluctuations induced by this model are comparatively smaller.

In order to further investigate the RB-VMS formulation, the local response at a point placed in
a region of intense turbulence activity, located near the bottom of the cavity, was observed. This
point, labeled as �, was chosen quite close to the one pointed by Bouffanais et al. [29] as the
site of maximum turbulence production. Its coordinates are given as x/L=0.3956; y/L=0.1724;
z/L=−0.4709. Figure 10 depicts the total kinetic energy time history using both SUPG/PSPG/

LSIC plus the Smagorinsky model and RB-VMS for point �.
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Figure 10. Time history of total kinetic energy at point �.

Figure 11. Fourier transform of total kinetic energy at point �.

Turbulence reveals itself as a multiscale phenomenon also by the way energy is dissipated
through a transfer among different scales, generating the so-called ‘energy cascade’. This transfer
mechanism can be better observed by transforming the time signals into its Fourier representation,
as depicted in Figure 11, where the frequency � gives the repetition period in the cavity flow.
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Figure 12. ln(�)× ln(|Ek(�)|) plot of Fourier transform of total kinetic energy at point �.

Figure 13. Line fit of Fourier transform of total kinetic energy at point � in range −1.3< ln(�)<0.

This Fourier transform can be used to evaluate the kinetic energy distribution according to
the sizes of eddies. To this end, we consider the ln(�)×ln(|Ek(�)|) plot in Figure 12. In the
range −1.3< ln(�)<0, the data shown could be approximated by a linear relationship that could
be expressed as ln(�)≈C0 ln(|Ek(�)|), where C0 is a negative real constant. This plot has a
resemblance with the Kolmogorov energy cascade and we note clearly the scale separation and
the inertial subrange. A close inspection in the inertial subrange may provide a better insight
into the behavior of RB-VMS. To this end, data for RB-VMS and SUPG/PSPG/LSIC plus the
Smagorinsky model solutions in the highlighted region were selected for a linear fit.

This result is shown in Figure 13. The Kolmogorov theory states that in the inertial subrange,
which is assumed to be partially covered by the employed space discretization, Ek(�)∝�−5/3.
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Figure 14. Mean fluctuation velocity (a) and mean velocity streamtubes (b).

As can be seen, the linear fit for the RB-VMS solution has a slope very close to − 5
3 , indicating

that RB-VMS is able to represent this behavior much better than the stabilized formulation with
the Smagorinsky model.

Figure 14 shows the computed mean fluctuation velocity (u′) and mean velocity (uh) streamtubes
for the RB-VMS solution. The streamtubes are colored based on the magnitudes and the presence
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Figure 15. Performance analysis of inexact Newton method for the lid-driven cavity flow at Re=12000:
(a) absolute residua; (b) relative residua; (c) relative solution increment; and (d) linear tolerance.

of the main vortex, the secondary vortex near the bottom corner and many other vortical structures,
typical from turbulent flow can be noted. In the mean fluctuation velocity plot, it is observed
that magnitudes follow the velocity field. That is, it is higher in regions where the flow energy
transfer is high.

In Figure 15 we show a performance analysis of the inexact Newton method for RB-VMS and
our SUPG/PSPG/LSIC plus the Smagorinsky model solutions. We can see, for 15 time steps
around t=1600 s, the evolution of the absolute residual (a), the relative residual (b), the solution
increment (c) and the GMRES tolerance (d) for the inexact Newton iterations in this interval.
The horizontal axis represents the global nonlinear iteration counter. We observe in Figure 15 that
RB-VMS presents a performance similar to the SUPG/PSPG/LSIC plus the Smagorinsky model
solution. In this time interval, however, the computed GMRES tolerances for the inexact Newton
method in RB-VMS are greater. In all other time intervals we have observed that performances
are comparable.

5. CONCLUSIONS

In this work we have shown how to implement the residual-based variational multiscale (RB-
VMS) method, using the advective-form of the convection term of the Navier–Stokes equations,
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as a straightforward extension of standard stabilized methods with a modified advective velocity.
This requires minimum modification of the existing highly optimized finite element edge-based
code for the incompressible Navier–Stokes equations with streamline-upwind/Petrov–Galerkin and
pressure-stabilizing/Petrov–Galerkin (SUPG/PSPG) formulations plus the least-squares incom-
pressibility constraint (LSIC) stabilization. A laminar and a turbulent test case was solved. We
have shown that RB-VMS presents accuracy and performance similar to SUPG/PSPG/LSIC in the
incompressible flow past a circular cylinder at Re=100. We then compared our results in the lid-
driven cubic cavity at Re=12000 problem, where turbulent effects are present. We noted that the
present implementation is able to capture most of the relevant turbulent flow features with reason-
able accuracy when compared with highly resolved numerical simulations and experimental data.
We also have shown that the present RB-VMS implementation has a computational performance
comparable with the SUPG/PSPG/LSIC formulation with a classical Smagorinsky model.
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